Capabilities and Performances of the Selective Laser Melting Process

نویسندگان

  • Sabina L. Campanelli
  • Nicola Contuzzi
  • Andrea Angelastro
  • Antonio D. Ludovico
چکیده

The current market is in a phase of accelerated process of change, that leads companies to innovate in new techniques or technologies to respond as quickly as possible to the everchanging aspects of the global environment. The economy of a country is heavily dependent on new and innovative products with very short development time. Companies, currently, have considerable success, only if they develop the ability to respond quickly to changing of customer needs and to use new innovative technologies. In this context, the companies that can offer a greater variety of new products with higher performance resulting in advantage over the other. At the heart of this environment there is a new generation of customers, who forced organizations to research new technologies and techniques to improve business processes and accelerate product development cycle. As a direct result, factories are forced to apply a new philosophy of engineering as the Rapid Response to Manufacturing (RRM). The concept of the RRM uses products previously designed to support the development of new products. The RRM environment was developed by integrating the various technologies, such as CAD-based modelling, the knowledge-based engineering for integrated product and process management and the direct production concepts. Direct production uses prototyping, tooling and rapid manufacturing technologies to quickly test the design and build the part (Cherng et al., 1998). Among RRM technologies, Rapid (RP) and Virtual (VP) Prototyping are revolutionizing the way in which artefacts are designed. Rapid Prototyping (RP) technologies embraces a wide range of processes for producing parts directly from CAD models, with little need for human intervention; so, designers can produce real prototypes, even very complex, in a simple and efficient way, allowing them to check the assembly and functionality of the design, minimizing errors, product development costs and lead times (Waterman & Dickens, 1994). The SLS technology was developed, like other RP technologies, to provide a prototyping technique to decrease the time and cost of the product cycle design. It consists of building a three dimensional object layer by layer selectively sintering or partial melting a powder bed by laser radiation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical Simulation Of Heat Affected Zone Microstructure During Laser Surface Melting

Microstructural changes during laser welding and laser surface treatment has been regarded by many researchers. Most researches have focused on studying the effect of various process parameters on the size and microstructure of the heat affected zone. But some studies show that the initial microstructure of the base metal can also affect the heat affected zone dimensions and final microstructur...

متن کامل

Selective Laser Sintering of Porous Silica Enabled by Carbon Additive

The aim of this study is to investigate the possibility of a freeform fabrication of porous ceramic parts through selective laser sintering (SLS). SLS was proposed to manufacture ceramic green parts because this additive manufacturing technique can be used to fabricate three-dimensional objects directly without a mold, and the technique has the capability of generating porous ceramics with cont...

متن کامل

A MODEL STUDY OF LASER ISOTOPE SEPARATION BY PHOTOIONIZATION OR PHOTODISSOCIATION PROCESS

In this study, the selective photoexication of isotopic mixtures by laser light is investigated. Atomic and molecular methods are examined and rate equations are derived for both cases. Two and three step photoionization techniques are considered and rate equations are solved for ion yields. The molecular photodissociation process is also studied and the dependence of the dissociation produ...

متن کامل

Modeling of selective laser sintering/selective laser melting

Selective laser sintering and selective laser melting are powder based additive manufacturing (AM) process that can rapidly manufacture parts with comparable mechanical properties to conventional manufacturing methods directly from digital files. However, the processing recipe development and design optimization of AM parts are often based on trial and error which erodes the benefit of AM. Mode...

متن کامل

Interaction between Time Dependent Exposure Strategies and Part Positioning within Selective Laser Melting Process of Plastics

The selective laser melting of polymer powder is, for rapid prototyping applications, a well-established technology, although a lack in basic process knowledge occurs. Considering demands of series production the selective laser melting technique of polymers is faced with various challenges concerning processable material systems, process strategies and part properties. Consequently, basic rese...

متن کامل

Selective Laser Melting Produced Ti-6Al-4V: Post-Process Heat Treatments to Achieve Superior Tensile Properties

Current post-process heat treatments applied to selective laser melting produced Ti-6Al-4V do not achieve the same microstructure and therefore superior tensile behaviour of thermomechanical processed wrought Ti-6Al-4V. Due to the growing demand for selective laser melting produced parts in industry, research and development towards improved mechanical properties is ongoing. This study is aimed...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012